### POTENTIAL FOR PEAK DEMAND REDUCTION IN INDIANA

IRP Contemporary Issues Technical Conference

April 24, 2018

### What is an "Advanced Energy Economy?"

A prosperous world that runs on secure, clean, affordable energy



### The Power of Many to Transform Policy

Leadership Council 8minutenergy











































AMERESCO (1)



**//AMP** 



B beneficial state bank







amazon















































AMPION





\chi AutoGrid



































### Indiana DR study purpose and scope

### POTENTIAL FOR PEAK DEMAND REDUCTION IN INDIANA

Prepared for Indiana Advanced Energy Economy by Demand Side Analytics, LLC

February 2018



- Estimate cost-effective demand response (DR) potential in Indiana
  - Capacity (MW)
  - Net benefits (NPV of cost savings)
- Three market segments
  - Commercial & Industrial (C&I)
  - Residential smart thermostats
  - Grid-sited energy storage
- Ten-year time horizon (2018-2027)
- Acknowledgements
  - Study conducted by Demand Side Analytics LLC
  - Residential smart thermostat data provided by ecobee's "Donate your Data" program

https://info.aee.net/2018-peak-demand-reduction-for-indiana



### Indiana's peak loads are driven by weather

#### **Weather Sensitivity of Indiana Loads**



### Study methodology (simplified)

- Develop annual peak demand forecast
- Develop avoided cost scenarios (L, M, H)
  - Capacity
  - T&D
  - Energy
- Define characteristics of the DR program
- Assess cost-effectiveness
  - Utility Cost Test
  - Market potential estimates based on maximizing net benefits (typical UCT ratio >1.6)
- For grid storage: include locational benefits
- Estimate economic potential\*



# Drivers of demand response program participation





### Avoided costs are a key driver of DR costeffectiveness (\$/kW-yr)

| Avoided<br>Cost<br>Scenario | Avoided<br>Generation<br>Capacity | Avoided<br>Transmission | Avoided<br>Distribution |
|-----------------------------|-----------------------------------|-------------------------|-------------------------|
| Low                         | \$14                              | \$0                     | \$0                     |
| Medium                      | \$56                              | \$10                    | \$10                    |
| High                        | \$99                              | \$20                    | \$20                    |

- Energy peak to off-peak differential assumed to be \$20/MWh
  - DR assumed to shift usage from peak to off-peak hours
- Based on recent available IRPs, IN avoided costs appear to be between the Medium and High scenarios
- Battery storage assumed to be deployed only in constrained areas of the grid, with higher avoided T&D costs.



#### C&I DR potential in 2027 – as much as 4 GW





# C&I DR costs savings (10-year NPV of net benefits - \$ million)

| Avoided<br>Cost<br>Scenario | Day-Ahead<br>Notification | Day-of<br>Notification |
|-----------------------------|---------------------------|------------------------|
| Low                         | \$15                      | \$8                    |
| Medium                      | \$485                     | \$272                  |
| High                        | \$1,615                   | \$907                  |

- C&I DR is highly cost-effective in all scenarios
  - UCT ratios range from 1.61 to 1.94



# Residential connected thermostat market potential and cost-effectiveness in 2027

| Avoided<br>Cost<br>Scenario | 2027 Enrollment<br>(# thermostats) | 2027 MW<br>Impacts | Net Benefits<br>(\$ million) | UCT Ratio |
|-----------------------------|------------------------------------|--------------------|------------------------------|-----------|
| Low                         | 67,000                             | 84                 | < \$1                        | 1.01      |
| Medium                      | 214,000                            | 229                | \$73                         | 2.44      |
| High                        | 515,000                            | 553                | \$344                        | 2.74      |

- Costs to establish program are relatively low
  - Customers already buying smart thermostats
- Today, about 1.5% of IN households (~36,000) have connected thermostats



### Energy storage is cost-effective where there are locational T&D benefits

| Avoided<br>Cost<br>Scenario | MW  | NPV<br>Benefits<br>(\$ million) | NPV Costs<br>(\$ million) | Net<br>Benefits<br>(\$ million) | UCT Ratio |
|-----------------------------|-----|---------------------------------|---------------------------|---------------------------------|-----------|
| Low                         | 0   | \$0                             | \$0                       | \$0                             | N/A       |
| Medium                      | 139 | \$353                           | \$250                     | \$103                           | 1.41      |
| High                        | 329 | \$917                           | \$606                     | \$311                           | 1.51      |

- Low Scenario assumed no T&D benefits
- Medium Scenario assumed locational T&D benefits across 5% of system; High Scenario assumed 10%.



#### **Conclusions**

- There is significant remaining DR potential in the C&I sectors
- With air conditioning a primary driver of summer peak demand, connected thermostats represent a significant opportunity to reduce residential energy use and provide savings
- The potential for cost-effective battery storage to produce savings grows as battery costs decrease
- Cost-effective DR and energy storage in Indiana have the potential to generate net benefits ranging from \$448 million to \$2.3 billion over 10 years, in scenarios representative of expected avoided costs in Indiana.



### Thank you!

Ryan Katofsky <u>rkatofsky@aee.net</u>
Vince Griffin <u>vgriffin@aee.net</u>